Mechanism‐Based Fluorogenic trans‐Cyclooctene–Tetrazine Cycloaddition

نویسندگان

  • Arcadio Vázquez
  • Rastislav Dzijak
  • Martin Dračínský
  • Robert Rampmaier
  • Sebastian J Siegl
  • Milan Vrabel
چکیده

The development of fluorogenic reactions which lead to the formation of fluorescent products from two nonfluorescent starting materials is highly desirable, but challenging. Reported herein is a new concept of fluorescent product formation upon the inverse electron-demand Diels-Alder reaction of 1,2,4,5-tetrazines with particular trans-cyclooctene (TCO) isomers. In sharp contrast to known fluorogenic reagents the presented chemistry leads to the rapid formation of unprecedented fluorescent 1,4-dihydropyridazines so that the fluorophore is built directly upon the chemical reaction. Attachment of an extra fluorophore moiety is therefore not needed. The photochemical properties of the resulting dyes can be easily tuned by changing the substitution pattern of the starting 1,2,4,5-tetrazine. We support the claim with NMR measurements and rationalize the data by computational study. Cell-labeling experiments were performed to demonstrate the potential of the fluorogenic reaction for bioimaging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast and sensitive pretargeted labeling of cancer cells through a tetrazine/trans-cyclooctene cycloaddition.

There is considerable interest in the use of bioorthogonal covalent chemistry, such as “click” reactions, to label small molecules located on live or fixed cells. Such labeling has been used for the visualization of glycans, activity-based protein profiling, the site-specific tagging of proteins, the detection of DNA and RNA synthesis, investigation of the fate of small molecules in plants, and...

متن کامل

Two Rapid Catalyst-Free Click Reactions for In Vivo Protein Labeling of Genetically Encoded Strained Alkene/Alkyne Functionalities

Detailed kinetic analyses of inverse electron-demand Diels–Alder cycloaddition and nitrilimine-alkene/alkyne 1,3-diploar cycloaddition reactions were conducted and the reactions were applied for rapid protein bioconjugation. When reacted with a tetrazine or a diaryl nitrilimine, strained alkene/alkyne entities including norbornene, trans-cyclooctene, and cyclooctyne displayed rapid kinetics. To...

متن کامل

Computationally guided discovery of a reactive, hydrophilic trans-5-oxocene dienophile for bioorthogonal labeling† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ob01707c

The use of organic chemistry principles and prediction techniques has enabled the development of new bioorthogonal reactions. As this "toolbox" expands to include new reaction manifolds and orthogonal reaction pairings, the continued development of existing reactions remains an important objective. This is particularly important in cellular imaging, where non-specific background fluorescence ha...

متن کامل

Conformationally Strained trans-Cyclooctene with Improved Stability and Excellent Reactivity in Tetrazine Ligation.

Computation has guided the design of conformationally-strained dioxolane-fused trans-cyclooctene (d-TCO) derivatives that display excellent reactivity in the tetrazine ligation. A water soluble derivative of 3,6-dipyridyl-s-tetrazine reacts with d-TCO with a second order rate k2 366,000 (+/- 15,000) M-1s-1 at 25 °C in pure water. Furthermore, d-TCO derivatives can be prepared easily, are access...

متن کامل

Imaging Cell Surface Glycosylation in Vivo Using “Double Click” Chemistry

Dynamic alterations in cell surface glycosylation occur in numerous biological processes that involve cell-cell communication and cell migration. We report here imaging of cell surface glycosylation in live mice using double click chemistry. Cell surface glycans were metabolically labeled using peracetylated azido-labeled N-acetylgalactosamine and then reacted, in the first click reaction, with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2017